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ABSTRACT
Semantic ontologies offer a formalized, machine-readable frame-
work for representing knowledge, enabling the structured descrip-
tion of complex systems. In the building domain, the adoption of
ontologies like the Brick schema has transformed how buildings
and their systems are modeled by providing a standardized, inter-
operable language. However, the complexity and the steep learning
curve involved in developing and querying semantic models present
substantial challenges, often requiring a workforce with specialized
expertise. This paper builds on our experience in investigating how
Large Language Models (LLMs) can help address these challenges,
focusing on their role in constructing and querying of semantic
models, particularly using the Brick Schema. Our study outlines
the requirements and metrics for evaluating the scalability and
effectiveness of LLM-based tools, while also discussing the current
challenges and limitations in developing such tools. Ultimately, this
paper aims to orient research efforts as various groups experiment
with diverse techniques, while enabling more effective comparison
of emerging solutions and fostering collaboration across the field.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Informa-
tion systems → Ontologies.
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1 INTRODUCTION
Semantic ontologies have become a cornerstone in the building
domain, fundamentally transforming the way physical systems are
described. By offering a structured, machine-readable representa-
tion, these ontologies facilitate interoperability, data integration,
and automation across various building management tasks [21].
However, despite their immense potential, the complexity involved
in developing and querying models based on these ontologies poses
significant challenges. While efforts have been made to capture
the intricacies of building systems, tools that enable building man-
agers and application developers to effectively create and query
these models have not been adequately developed [5]. The lack
of necessary easy-to-use tools restricts adoption to users with ad-
vanced programming and information systems knowledge, who
must also possess a deep understanding of building systems, their
components, and modeling choices.

We explore how Large Language Models (LLMs) can address the
challenges that previous methods have faced (e.g., need for building-
specific training) in building model construction and query genera-
tion. Trained on a vast corpus of data, LLMs have the potential to
generalize across domains without requiring the extensive domain-
specific training that many earlier approaches needed. Furthermore,
their human-interactive interface makes them a more adaptable
and accessible tool, as they are not restricted to predefined rules or
models, allowing broader applicability in diverse building contexts.
By leveraging LLMs, these processes can be democratized, reduc-
ing reliance on specialized knowledge and making ontology-based
models more widely usable.

In this paper, we make the following contributions: (1) we spec-
ify a list of features and performance indicators that can be used
to evaluate the scalability and effectiveness of future LLM-based
tools in real-world building-related applications, (2) we discuss the
current implementation challenges and future research directions
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for these application areas, providing directions for the develop-
ment of LLM-enhanced semantic ontology workflows for building
applications. Though we use Brick Schema as a case study, this
work is equally applicable to other building ontologies.

2 BACKGROUND
The workflow and steps involved in both the construction of a
model for a target building and the generation of a query to develop
applications are closely interconnected, as illustrated in Figure 1.
In the following sections, we discuss the specific challenges and
previous efforts that have shaped these tasks.
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Figure 1: Steps involved in Model Construction and Query
Generation Workflow
2.1 Model Construction
Semantic models streamline application development and deploy-
ment by providing a standardized framework to understand spatial
and functional relationships between equipment, enabling general-
ization of applications such as fault detection and diagnostics (FDD)
and control optimization. However, manually constructing these
models is a complex task, requiring expertise in building systems
and ontologies such as Brick [4] and SAREF [8]. This process often
involves manually mapping data points (e.g., sensors, setpoints) to
standardized semantic classes, defining relationships, and ensuring
that the model follows the ontology constraints, often interpret-
ing cryptic Building Automation System (BAS) point names. The
task is labor-intensive and costly, particularly for older buildings,
which may have inconsistent point naming conventions and require
synthesis of metadata from various sources [21].

Automation of model construction has been studied since the
early days of ontology use in buildings [6]. A significant portion
of the literature focuses on identifying semantic tags or classes
from building automation system (BAS) point names. This has been
achieved using machine learning (ML) approaches based on labeled
BAS point names [2, 15, 28, 29]. Some studies have used time series
measurements to more accurately classify certain sensor data (e.g.
zone temperature sensors)[13, 19, 22]. These approaches perform
well for identifying the class of each point and provide information
on the relationships between a point and related equipment. Fewer
studies investigate data-driven approaches to determine the spatial
and functional relationships between equipment [20, 28], which
provide contextual information for controls and analytics. While
promising, previous ML-based methods require representative data
sets for training and may not performwell on unseen building point
naming conventions or time series data streams. They also do not
use the full wealth of information traditionally used in building
semantic modeling, including as-built diagrams and BAS graphics,
which may be used by multi-modal LLMs.

Recent research has explored the potential of LLMs for the cre-
ation of ontologies. Studies have shown that LLMs can be used
to create ontologies from unstructured text [11], expand existing
ontologies to represent new concepts [26, 32], and validate ontolo-
gies [27]. One work utilized an LLM to create an ontology and also
instantiate it with test data to create a Knowledge Graph (KG), one
type of semantic model [16]. The majority of published works to
date have focused on the development of new ontologies, rather
than the use of existing ontologies to create semantic models of real
data. The ability of LLMs to format unstructured text into an onto-
logical structure is applicable to the construction of Brick models.
However, limitations of LLMs, including self-consistency and hal-
lucination [33], present greater challenges when instantiating an
ontology than creating one, because Universal Resource Identifiers
(URIs) from an ontology must be recalled and used verbatim.

Retrieval-AugmentedGeneration (RAG) has emerged as a promis-
ing technique to boost LLM performance in domain-specific tasks.
RAG combines the broad knowledge of pre-trained languagemodels
with the ability to retrieve and integrate relevant external infor-
mation [18]. In constructing semantic models, RAG offers benefits
like improved accuracy, reduced hallucination, domain adaptation,
and the inclusion of up-to-date knowledge. However, its success
depends on the relevance of retrieved information, and challenges
remain in maintaining consistency and contextual understanding
within ontologies. Other efforts to simplify model construction,
such as [10], use templates to reduce the effort by reusing common
patterns across buildings. SHACL-based validation ensures models
are built correctly and contain necessary information to support
applications. While this approach streamlines model creation, users
must still understand BAS point names and building topology, then
align their data with existing templates or create new ones.

2.2 Query Generation
Query generation enables users to retrieve structured information
from a semantic model, which is crucial for scaling up applications
such as FDD and analytics. SPARQL is a query language used to
interrogate graph-based data [1]. Translating natural language ques-
tions into SPARQL queries, often referred to as Text-to-SPARQL,
is critical for increasing usability of KGs, as users often lack the
technical expertise to write SPARQL directly.

This translation process forms the foundation of Knowledge
Graph Question Answering (KGQA), where semantic parsing meth-
ods convert natural language questions into formal query languages
like SPARQL. Early research in semantic parsing-based KGQA pri-
marily involved manually crafted SPARQL queries designed to test
and evaluate ontologies, as demonstrated in several foundational
studies [7, 12, 24]. These approaches, while effective in controlled
settings, were labor-intensive and lacked scalability, making them
impractical for broader application. As the field progressed, ML-
based methods gained traction, including models that used syn-
tactic features to train SPARQL query ranking with Tree-Long
Short Term Memory (LSTM) algorithms [31], although their per-
formance was limited when dealing with unseen questions. Other
models employed sequence-to-sequence LSTM algorithms to gen-
erate SPARQL templates [25], which were then reconstructed into
final queries using rule-based heuristics. However, these methods
struggled with unknown words and lacked a deeper understanding
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of the input questions. Traditional ML relies heavily on domain-
specific training data, a challenge in the building domainwhere each
building has a unique KG. LLMs, however, have shown promise in
generating SPARQL queries with minimal training, offering greater
adaptability across domains. For example, SGPT was introduced
as a method that bypasses the need for manual SPARQL construc-
tion by leveraging an LLM to learn graph patterns and generate
queries [23]. Building on this, SPARQLGEN utilized GPT-3 in a
one-shot SPARQL generation framework, where providing relevant
context in the prompt significantly improved the quality of gener-
ated queries [17]. AUTO-KGQAGPT further extended this line of
research by conducting experiments with GPT-3.5, demonstrating
that selectively feeding fragments of the KG’s T-Box and A-Box
can enhance the translation of natural language questions into
SPARQL queries [3]. Additionally, an LLM-based model was de-
veloped, which integrates a Bidirectional encoder representations
from transformers (BERT) encoder with a Linear-Chain Condi-
tional Random Fields (CRF) for mention extraction, followed by
entity linking and relationship selection [30]. The final queries are
generated by a fine-tuned ChatGLM-6B, either by combining all
entities and relationships into a single prompt or by creating mul-
tiple queries for each entity. However, each of these methods had
specific limitations to work with building ontologies as they either
(1) result in unmanageably large subgraphs [3, 30], (2) require fine-
tuningwith difficult to find knowledge bases [30], (3) require ground
truth queries [17], (4) require example question-query pairs [17, 23].
Based on our experiments with Brickmodels fromMortar [9], only
one domain-independent approach—Auto-KGQAGPT—among the
methods listed above could be adapted to work with building on-
tologies with minimal modifications. However, it still struggled to
accurately match input descriptions to the correct ontology nodes,
largely due to the complexity and ambiguity inherent in textual
descriptions within the building domain.

2.3 Early Considerations on LLMs for Buildings
While the literature on this topic is currently sparse, the authors
acknowledge the rapidly evolving body of research exploring the
application of LLMs to the building domain. As several groups
experiment with diverse techniques to develop tools addressing
complex challenges, this paper reflects on the authors’ experiences
and lessons learned in applying LLMs to create and query semantic
models of buildings using Brick. For model construction, we used
point names from several real buildings throughout California.
During query generation, we corrected a comprehensive building
model from [9] and extracted application descriptions and queries
from its codebase. We tested various LLM approaches, primarily
using GPT-4o.

This paper is based on our preliminary experience because the
necessary building blocks for systematic and rigorous evaluations
are still lacking. In the absence of such benchmarks and methods,
one can either present simple test cases or lay the groundwork
for a collaborative research effort by listing the requirements for
future works. Our focus is on the latter rather than highlighting
the details of our ad-hoc experimentation. Thus, this paper calls for
community efforts to develop these foundations and aims to foster
a robust discussion among researchers, encouraging the sharing of
early insights to accelerate innovation.

3 FEATURES & PERFORMANCE METRICS
3.1 Features
These features provide a checklist for evaluating the scalability of
model and query building tools in the building domain. Though
they are not strict requirements, their presence would enhance the
ability of such tools to address users needs and support the use of
building ontologies at scale.

Building-Agnostic. A scalable model construction tool should
ideally not require specific training or fine-tuning for each individ-
ual building or point-naming convention. Existing methods often
depend on training datasets tailored to each building or individual
portfolios, which require experts manually tagging point names.
While this approach can be useful, it limits scalability. Building-
agnostic tools are the ones which can operate across various build-
ings without requiring customization for each case, enabling more
efficient and generalized model construction.

Similarly, one of the most critical features of effective text-to-
SPARQL (i.e., Query Generation) tools in the building domain is
their ability to generate queries that are independent of specific
building models. Given the the heterogeneity of building configu-
rations and the existence of alternative, yet valid, modeling choices
for the same configuration [5], it is essential that query generation
tools can abstract these differences and produce consistent results
across various building types.

Ontology Adherence. A scalable model construction tool must
ensure that the models it generates strictly adhere to the underlying
ontology or ontologies, such as the Brick schema. While obvious,
several from the literature do not validate that resulting models
comply with a specified ontology, and existing tools do not safe-
guard against the errors that are commonly made by LLMs due to
hallucination, like the use of non-existent class names.

In the context of query generation, ontology adherence enables
the effective use of class hierarchies and relationships. For instance,
if an application needs to query all available temperature sensors,
this information may not be directly accessible in the model if
the sensors were modeled using a subclass (e.g., ‘Supply_Air_-
Temperature_Sensor). A useful feature for query generation tools
would be the ability to utilize information about class hierarchies to
make data gathering more flexible. For instance, by leveraging the
fact that a Supply_Air_Temperature_Sensor is rdf:SubClassOf
brick:Temperature_Sensor, query tools can automatically infer
and retrieve data from all relevant subclasses, making data gather-
ing more flexible and comprehensive.

Handling Ambiguous Inputs. Real-world building data is of-
ten fraught with ambiguities, such as inconsistent point names
or incomplete information, which can hinder accurate model con-
struction. A scalable tool must effectively manage this uncertainty,
recognizing and resolving ambiguities while ensuring the model’s
integrity. By incorporating mechanisms for uncertainty-awareness,
the tool becomes more robust, capable of adapting to varying data
quality levels without compromising accuracy or scalability. This
ability to address ambiguous inputs is crucial for ensuring the tool’s
practical applicability across diverse datasets and buildings.

In addition to managing data uncertainties, query generation
tools for building ontologies must process human language inputs
that vary in specificity, especially regarding the terminology used
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by practitioners. Inputs may range from precise terms to general
or ambiguous phrases, and an effective tool must account for these
variations. Handling such implicit descriptions ensures the tool’s
flexibility, making it suitable for real-world applications where user
inputs often lack clarity. This adaptability enhances the tool’s practi-
cality, ensuring accurate query results evenwhen input descriptions
are not fully explicit.

Consistency. Although LLMs are inherently probabilistic, it is
crucial that model construction and query generation tools produce
results that are as deterministic as possible. By carefully defining
tasks and providing clear instructions, the variance in LLM outputs
can be minimized, ensuring that the same input consistently yields
the same output. Other approaches, such as semantic validation,
may also provide this feature. This determinism is essential for
building management applications, where reliable and repeatable
query results are necessary for making informed decisions and
maintaining operational consistency.

Model-Awareness. Entities in buildings have many intercon-
nected relationships which previous tools for automating the con-
struction of semantic models have struggled to capture [14]. Identi-
fying which ontology class a point belongs to is useful, but semantic
models must also contain information about how entities in a build-
ing (e.g. parts of equipment, rooms, zones) relate to each other.
Modeling these relationships requires awareness of what entities
have been instantiated, so that they can be connected together. Use-
ful information for identifying these relationships is often available
in images such as floor plans and as-built diagrams, in addition to
point names. Thus, identification of these relationships may benefit
from the multi-modal input capabilities of LLMs.

An essential feature of query generation tools in the building
domain is the ability to be ’aware’ of the specific building model.
While queries can be written independent of a specific building
model, their accuracy depends heavily on the modeling choices
made. This awareness allows the tool to determine whether empty
results stem from the building lacking the queried concept or from a
poorly formulated query. By incorporating model-awareness, these
tools can improve the reliability and relevance of query results.

3.2 Performance Metrics
To provide a more comprehensive evaluation, beyond just accuracy
metrics, it is also important to assess the computational complexity
required for each solution. As the authors worked on generating
and querying semantic models, it became evident that conducting a
generalizable evaluation of these tools is not straightforward. The
performance metrics listed below, aimed at assessing efficiency,
were derived from preliminary tests.

Computational Complexity (i.e., runtime). Our preliminary
experiments with these tools have shown that higher accuracy
can often be achieved through trial-and-error or search-based ap-
proaches. However, this can significantly impact the practicality of
the tools due to the extended computational complexity. In cases
where complex queries or models need to be generated, the applica-
tion runtime can become a critical bottleneck, limiting the effective-
ness and deployability of the tool. To allow for a fair comparison,
researchers should clearly report the computational runtime of their
methods. It is also important to recognize that the computational
cost may not stem solely from LLM calls; frameworks developed

for model construction and query generation often include other
components that contribute to the overall cost, such as advanced
querying techniques or embedding-based similarity checks [3, 30].

Token Size. In LLMs, computational cost is closely tied to the
number of tokens processed in a prompt. For tools focused onmodel
construction or query generation, the framework does not necessar-
ily need to be single-shot. Thus, the cumulative number of tokens
used across varying number of LLM calls should be reported for
each evaluation sample. This metric helps to approximate the LLM-
based computational demand, indicating how resource-intensive
the method is when handling multiple tasks or queries.

Monetary Cost (in US dollars). While token usage is an in-
direct indicator of cost, it does not fully account for the financial
expenses associated with different LLMs. Some models are commer-
cial and require payment, while others are open-source, offering
lower or no direct costs. Therefore, it becomes important to report
the monetary cost for each task or query in practical terms, espe-
cially for commercial LLMs. This would provide a clearer picture of
the financial implications of deploying a particular method, helping
researchers judge the financial feasibility of the designed tools.

4 CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

The challenges and future research directions outlined in this sec-
tion are based on our expert insights and practical experimentation,
as the essential building blocks for empirical validation are still miss-
ing. Critical components like comprehensive evaluation datasets,
standardized accuracy metrics, and benchmarks are far from being
available, making it impossible to validate these tools in a meaning-
ful and comparable way. For instance, there are no widely accepted
datasets for query generation, and without proper accuracy met-
rics, assessing tool performance is highly subjective. This lack of
foundational resources means that the challenges discussed here
remain theoretical, based on our informed observations. Without a
concerted effort from the research community to build these key
elements, achieving reliable empirical results will be out of reach,
and the advancement of LLM-based tools for model construction
and query generation will remain limited.

Domain Knowledge.A key challenge in developing LLM-based
tools for model construction and query generation is the need for
domain-specific knowledge. Building systems, with their variety of
HVAC configurations, sensors, and equipment, require tools that
grasp these nuances. While LLMs help lower the expertise bar-
rier, they still struggle with the depth of knowledge required to
accurately interpret building-specific data. In model construction,
this is essential when establishing functional relationships between
building components. For query generation, domain knowledge is
needed to infer connections between variables (e.g., linking out-
door air temperature to an AHU) when human input is implicit.
Additionally, embedding domain-specific knowledge into LLMs,
such as fine-tuned HVAC expert models, could create specialized
agents for working with building semantics

Measurement of Accuracy. Validation is crucial to ensure the
accuracy and reliability of models constructed using semantic on-
tologies. While SHACL can be employed to automatically validate
how classes and relationships interact within the ontology, it only
ensures structural correctness and adherence to the ontology’s
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rules. However, the accurate mapping of point names to their corre-
sponding classes and relationships remains a challenge, as semantic
technologies cannot validate whether a specific point name has
been correctly interpreted or classified, or if relationships modeled
are truly present in the building. This aspect still requires human
validation in practice.

Measuring the accuracy of query results in query generation
presents a unique challenge because some queries may yield results
that are nearly correct but differ slightly, such as in variable names
or the order in which results are returned. Traditional exact match
algorithms might fail to recognize these as valid, even though the
core information is correct [23]. Approaches like variable name
normalization [23] could be adapted to improve recognition of
equivalent results. This approach allows for a more nuanced assess-
ment of the tool’s performance, ensuring that minor discrepancies
do not obscure accuracy and providing a more realistic reflection
of the tool’s effectiveness in diverse querying scenarios.

Training Datasets. While some datasets exist for point names
and models, they are insufficient for fine-tuning LLMs to handle
the wide range of building types and configurations. The absence
of complete and up-to-date datasets of labeled building data re-
mains a significant obstacle to developing accurate tools for model
construction. Future efforts should focus on creating more compre-
hensive datasets that include not only point names but also as-built
diagrams. This would allow for the use of multimodal models, in-
tegrating both visual data, such as blueprints, with point name
datasets to provide more contextually accurate model construction.

Additionally, there are no available datasets in the building do-
main where questions are mapped to SPARQL query outputs. The
creation of such datasets would facilitate both training and enable
techniques like few-shot prompting for query generation. It is im-
portant, however, to consider the inherent building dependency in
such datasets. Training models on text-to-SPARQL pairs specific to
a building is likely to result in much higher accuracy, as the context
and structure of the queries would directly align with the building’s
unique configuration.

Evaluation Datasets. LLM-based applications are observed to
be improving with iterative prompt engineering. However, their
biggest challenge lies in understanding how to evaluate them. Thus,
development of an evaluation set is inevitable for the progress of this
field. Current evaluation sets for point name tagging have primarily
been created by reverse-engineering available Brick models [2],
which, while useful, are not sufficient for testing more advanced
capabilities like handling ambiguous inputs. Future research should
focus on developing evaluation sets that tag undefinable point
names—point names that have no clear meaning or interpretation.
These would be particularly valuable for testing how tools handle
uncertainty and deal with ambiguous or erroneous input data. Such
evaluation sets would also provide a way tomeasure howwell LLMs
can avoid hallucinating nonexistent classes for meaningless point
names, ensuring that the tools remain grounded in the available
ontology. It is important to note that these evaluation sets should
include examples to test the whole model building capability rather
than focusing on its first step (i.e., point name tagging).

While most of existing query generation techniques have been
tested on specific datasets, building industry lacks such a source.
Development of such an evaluation set is challenging in various

ways: (1) inputs are likely to be ambiguous, (2) results and queries
will depend on the specific building model, (3) effective accuracy
measurements are lacking. Firstly, there is a considerable lack of
human inputs that would indicate how building managers would
linguistically describe the metadata requirements. Development
of such a source should be systematic so it can consist sufficient
diversity in two directions: variance in the application type, vari-
ance in the human language descriptions of a certain application.
Secondly, another challenge lies in the way of how queries can be
written. For the same metadata requirements, queries can be gener-
ated in different ways. Thus, a set of rules should be established in
generating the ground truth queries or results.

Inference of Relationships. Another critical challenge for
model generation is the inference of relationships between dif-
ferent entities in a model (e.g. points, equipment, rooms, zones).
Previous work generally focuses on mapping individual points to
ontological classes, and fails to create the relationships that de-
scribe how a building is composed, which are a necessary part of a
semantic model. Developing methods that can infer these relation-
ships from point names, domain knowledge, and building context
would greatly enhance the utility of the generated models. Future
research should explore the integration of contextual data and re-
lationship inference mechanisms into LLM-driven tools to create
more complete and accurate models.

Accurate Up-to-Date Building Models. As the way queries
are written depends on the modeling choices [5], the evaluation
set needs to include a variety of building models. Though there
are readily available models of Brick schema in [4, 9], none of
them are accurately modeled based on the latest modeling consen-
sus. Thus, developing such an evaluation set inevitably requires
gathering/creating representative building models of various sizes.

Subgraph Extraction. As opposed to other KGs tested by pre-
vious studies, building models created using Brick schema suffer
from their large scale, limiting the ability to push the whole schema
in the prompt. Thus, especially to provide model-awareness, tools
should be able to extract the relevant subgraphs of the models
within a reasonable token limit.

5 CONCLUSIONS
LLMs offer promising opportunities to perform a wide range of
tasks through human-interactive interfaces, providing a novel ap-
proach to engaging with complex systems like semantic ontologies.
In the building industry, where semantic ontologies have been used
for over a decade, LLMs can enhance adoption by lowering the ex-
pertise barriers that have traditionally limited their widespread use.
However, while LLMs can generate results that are nearly correct,
they still require human refinement and verification, and achieving
fully automated solutions without specialized knowledge in coding,
information systems, or building operations remains a challenging
but attainable goal. The development of LLM-driven tools for build-
ing ontologies will require sustained research, collaboration, and
the establishment of standardized models and evaluation bench-
marks to ensure consistent progress. Toward this vision, this paper
provides a outline for comparing and evaluating methods in the
field, identifies key challenges, and outlines future research direc-
tions to guide the effective application of LLMs in model and query
development tasks.
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