
Using Concept Maps for Notional Machine Selection in CS1
Ethan Richards

Colorado School of Mines
Golden, Colorado, U.S.A.
erichards@mines.edu

Sonia Spindt
Cherry Creek Innovation Campus

Centennial, Colorado, U.S.A.
sspindt@cherrycreekschools.org

Gabriel Fierro
Colorado School of Mines
Golden, Colorado, U.S.A.
gtfierro@mines.edu

ABSTRACT
A notional machine is an abstract representation of a program’s
execution. These alternate representations serve to highlight other-
wise hidden or subtle behavior in program execution, and eliminate
unnecessary or irrelevant details that can obstruct understanding.
Prior work has established that, by construction, there is no “uni-
versal“ notional machine that is appropriate for the entirety of a
CS1 curriculum. How, then, does an educator choose an appropriate
notional machine for a given learning sequence?

We present initial work on helping educators choose an effective
sequence of notional machines for a CS1 course. Our key insight
is to leverage a concept map capturing hard and soft dependen-
cies between computing concepts. By characterizing concepts and
notional machines together, we show that it is possible to design fea-
sible sequences of notional machines that cover a desired learning
sequence.

ACM Reference Format:
Ethan Richards, Sonia Spindt, and Gabriel Fierro. 2024. Using Concept Maps
for Notional Machine Selection in CS1. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 2 (SIGCSE 2024),
March 20–23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3626253.3635535

1 INTRODUCTION
Notional machines (NMs) are a tool for explaining computing con-
cepts in different or abstracted terms. These alternate represen-
tations serve to highlight otherwise hidden or subtle behavior in
program execution, and eliminate unnecessary or irrelevant details
that can obstruct understanding. Prior work has established that,
by construction, there is no “universal“ notional machine that is
appropriate for the entirety of a CS1 curriculum [2, 4]. Thus, the nat-
ural question arises: how does an educator choose an appropriate
notional machine for a given learning sequence?

Our key insight is to root this decision making process in a CS1
concept map that captures hard and soft dependencies between
computing concepts. We represent the map as a directed graph so
a learning sequence can be described as a traversal of that graph.
To inform the choice of notional machines for a given learning se-
quence, we look to recent work in characterizing notional machines
by their representation and concepts covered [1]. Through annotat-
ing the notional machines with the same concepts as captured in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03.
https://doi.org/10.1145/3626253.3635535

the map, we show that it is possible to design and evaluate differ-
ent sequences of notional machines that complement the desired
learning sequence.

In this poster abstract, we show our initial work in using a
hypothetical CS1 concept map to choose a sequence of notional
machines given a learning sequence over the concept map.

2 BACKGROUND AND RELATEDWORK
A notional machine is an abstract representation of a program’s
execution [4]. Fincher [1] proposes two forms in which this repre-
sentation can manifest: a representation-based interactive activity
or an analogy-based representation. Such representations are bene-
ficial to a learner to understand topics and form their own mental
models of program flow and state.

[2] asserts that here is no single "universal" notional machine;
that is, there is no single abstraction sufficient to cover all CS1
concepts. This means that a full learning sequence for a CS1 course
would require multiple notional machines, whether analogy-based,
representation-based, or otherwise. However, little work has been
done in mapping sequences of notional machines to curricula.

Concept maps are an established idea in pedagogy [3]. Such
maps can be used to better inform the development and design
of curriculum by portraying it in a sequence, and then adapting
material based on the constraints of the educator.

However, such sequences are not guaranteed to be linear, and
have no such description of dependence between concepts. As a
result, there is a need for helping educators choose an effective
sequence of notional machines. We propose that if we express
concept maps and notional machines together using a directed
graph, we can leverage the graph’s structure to inform the selection
of sequences of notional machines in a CS1 curriculum.

3 CONCEPT MAP FOR CS1
Educators have inherent constraints such as time, domain knowl-
edge, student interest, or mandated curriculum (e.g., AP). Concept
maps can help to make obvious the distinctions within a directed
set of concepts and how to best approach designing a learning
sequence given those constraints.

Figure 1 shows a simplified concept map with multiple possible
learning sequences for teaching functions. Each node represents
a single programming concept, such as variables. A programming
concept is a generalized concept such that it can relate to other
concepts, and can have child sub-concepts of its own. For simplicity
and clarity of presentation, we illustrate only a subset of our larger
concept map that we have developed. Notional machines in the
figure are drawn from [1].

https://orcid.org/0009-0001-6526-2584
https://orcid.org/0009-0001-6967-8050
https://orcid.org/0000-0002-2081-4525
https://doi.org/10.1145/3626253.3635535
https://doi.org/10.1145/3626253.3635535


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Ethan Richards, Sonia Spindt, and Gabriel Fierro

3.1 Relationships
In our formulation, concept maps have two types of relationships:
hard prerequisites and soft prerequisites. Hard prerequisites cap-
ture which concepts must be covered before another concept can
be taught. For example, functions are a natural hard prerequisite of
teaching recursion.

Soft prerequisites capture optional, but helpful, dependencies
between concepts. For example, while we contend that an under-
standing of data types in programming languages is essential knowl-
edge for understanding variables as containers of state (hard prereq-
uisite), a conceptualization of expressions is not strictly necessary.
This does limit the kinds of programs that can be expressed by the
learner (i.e. only those with static assignments to variables). We
capture this concept topology in Figure 1.

3.2 Learning Sequences
The intent of the concept map is to capture all of the hard and
soft dependencies between programming concepts. The process of
designing a learning sequence can thus be framed as choosing a
topological sort of this graph such that (a) hard prerequisites must
be covered before their dependent concepts, and (b) soft prerequi-
sites may be covered before their dependent concepts. The concept
map offers a principled way of choosing which concepts to teach,
and in what order. Further, we will show how the concept map can
inform the choice of notional machines (§4).

We first illustrate how our (intentionally) simple concept map
permits multiple learning sequences for starting from data types
and progressing to teaching functions. The first sequence (a-c-e)
minimizes the number of concepts covered before functions are
taught by ignoring any soft prerequisites. Another choice (a-b-c-e)
includes expressions in the learning sequence to expand the set
of programs that learners can write; here, expressions are taught
before variables because of the soft prerequisite relationship.

Neither of these learning sequences requires teaching control
flow. However, if the educator decides to include recursion as a
learning goal, then the concept map will lead them to include con-
trol flow as a necessary component of the learning sequence. The
topology of the map allows them to cover control flow either before
or after functions, as long as it is covered before teaching recursion.
This also changes the potential sequence of notional machines.

Ultimately, there is no one correct way of mapping notional
machines to concepts in any given curriculum, but we intend to
give a set of options to educators that are useful enough to produce
a learning sequence.

4 CHOOSING A NOTIONAL MACHINE
SEQUENCE

Notional machines can be characterized in terms of program con-
cepts using a concept map. This characterization can be applied
with a graph-theoretic approach in order to choose a sequence of
notional machines to use in a curriculum.

Using the concept map, the educator can determine which no-
tional machines can be used to teach or illustrate a given concept.
With the added context of dependencies between concepts, the
educator can also determine how a particular sequence of notional
machines can best support the learner experience.

(a) Data Types (c) Variables

(b) Expressions (d) Control Flow

(e) Functions

hardPrerequisiteOf
softPrerequisiteOf

NM2

NM1

NM3

NM4

NM1: Variable Trace Table
NM2: Expression as Tree
NM3: Control Flow as Graph
NM4: Function as Black Box
NM5: Recursion Demo with Python Tutor

(f) Recursion

NM5

Figure 1: A simple concept map allows multiple possible
learning sequences for teaching Functions: a-c-e, a-b-c-e
and a-c-d-e. Notional Machines (NM𝑋 ) are drawn from [1]

Consider the sequence a-c-d-e from Figure 1. This sequence
can be covered with notional machines NM1, NM3 and NM4. NM2
would not necessarily be appropriate to use for teaching variables
because its design also incorporates expressions, which are not in
the learning sequence. The use of the concept map and notional ma-
chine characterization supports this choice. If an educator wished
to extend the above sequence to also include recursion (a-c-d-e-f),
then they must make a decision whether to (a) use NM4 to teach
functions and then NM5 to teach recursion, or (b) use NM5 to teach
both functions and recursion.

One caveat within a sequence is that transitioning between no-
tional machines may be confusing for learners. For that reason,
an educator might want to minimize the number of notional ma-
chines used to cover concepts in a sequence. Expressing a learning
sequence with concepts and notional machines together is an effec-
tive tool to solve this issue; educators can reason about when the
transition between one notional machine to another may or may
not be appropriate and timely for students.

Our proposed approach enables informed co-design of learning
sequences and notional machines. However, it is ultimately the
responsibility of the educator to decide which sequences of notional
machines are beneficial to implement in their learning sequence.

5 CONCLUSION
Graph theory can be utilized with concept maps to better inform our
decisions about the sequence of notional machines in CS1 curricula.
Future work will approach the problem of determining "good"
sequences of concepts and notional machines algorithmically.

REFERENCES
[1] Sally Fincher, Johan Jeuring, Craig S Miller, Peter Donaldson, Benedict Du Boulay,

Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, et al. 2020. Notional machines in computing education: The education of
attention. In Proceedings of theWorking Group Reports on Innovation and Technology
in Computer Science Education. 21–50.

[2] Sally A Fincher and Anthony V Robins. 2019. The Cambridge handbook of comput-
ing education research. Cambridge University Press.

[3] Vinicius dos SANTOS, Érica F de SOUZA, Katia R Felizardo, and Nandamudi L
Vijaykumar. 2017. Analyzing the use of concept maps in computer science: A
systematic mapping study. Informatics in Education 16, 2 (2017), 257–288.

[4] J Sorva. 2013. Notional Machines and Introductory Programming Education. ACM
Transactions on Computing Education (TOCE) 13, 2 (2013), 8–1.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Concept Map for CS1
	3.1 Relationships
	3.2 Learning Sequences

	4 Choosing a Notional Machine Sequence
	5 Conclusion
	References

